Budding Yeast Chromosome Structure and Dynamics during Mitosis

نویسندگان

  • Chad G. Pearson
  • Paul S. Maddox
  • E.D. Salmon
  • Kerry Bloom
چکیده

Using green fluorescent protein probes and rapid acquisition of high-resolution fluorescence images, sister centromeres in budding yeast are found to be separated and oscillate between spindle poles before anaphase B spindle elongation. The rates of movement during these oscillations are similar to those of microtubule plus end dynamics. The degree of preanaphase separation varies widely, with infrequent centromere reassociations observed before anaphase. Centromeres are in a metaphase-like conformation, whereas chromosome arms are neither aligned nor separated before anaphase. Upon spindle elongation, centromere to pole movement (anaphase A) was synchronous for all centromeres and occurred coincident with or immediately after spindle pole separation (anaphase B). Chromatin proximal to the centromere is stretched poleward before and during anaphase onset. The stretched chromatin was observed to segregate to the spindle pole bodies at rates greater than centromere to pole movement, indicative of rapid elastic recoil between the chromosome arm and the centromere. These results indicate that the elastic properties of DNA play an as of yet undiscovered role in the poleward movement of chromosome arms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MIS12/MIND Control at the Kinetochore

Kinetochores are complex multiprotein machines that link chromosomes to dynamic microtubules for chromosome segregation. Two studies in Cell reveal the structure of the human MIS12 and budding yeast MIND kinetochore complexes and the regulatory mechanisms that enable them to link chromosomes to microtubules during mitosis.

متن کامل

Spindle checkpoint proteins and chromosome–microtubule attachment in budding yeast

Accurate chromosome segregation depends on precise regulation of mitosis by the spindle checkpoint. This checkpoint monitors the status of kinetochore-microtubule attachment and delays the metaphase to anaphase transition until all kinetochores have formed stable bipolar connections to the mitotic spindle. Components of the spindle checkpoint include the mitotic arrest defective (MAD) genes MAD...

متن کامل

The dynamic nature of the nuclear envelope

In eukaryotes, chromosomes are encased by a dynamic nuclear envelope. In contrast to metazoans, where the nuclear envelope disassembles during mitosis, many fungi including budding yeast undergo "closed mitosis," where the nuclear envelope remains intact throughout the cell cycle. Consequently, during closed mitosis the nuclear envelope must expand to accommodate chromosome segregation to the t...

متن کامل

Chromosome condensation and sister chromatid pairing in budding yeast

We have developed a fluorescent in situ hybridization (FISH) method to examine the structure of both natural chromosomes and small artificial chromosomes during the mitotic cycle of budding yeast. Our results suggest that the pairing of sister chromatids: (a) occurs near the centromere and at multiple places along the chromosome arm as has been observed in other eukaryotic cells; (b) is maintai...

متن کامل

Tension-dependent regulation of microtubule dynamics at kinetochores can explain metaphase congression in yeast.

During metaphase in budding yeast mitosis, sister kinetochores are tethered to opposite poles and separated, stretching their intervening chromatin, by singly attached kinetochore microtubules (kMTs). Kinetochore movements are coupled to single microtubule plus-end polymerization/depolymerization at kinetochore attachment sites. Here, we use computer modeling to test possible mechanisms control...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 152  شماره 

صفحات  -

تاریخ انتشار 2001